
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Working With the Browser
React provides powerful abstractions that free you from touching the DOM directly in most
cases, but sometimes you simply need to access the underlying API, perhaps to work with a
third-party library or existing code.

The Mock DOM
React is so fast because it never talks to the DOM directly. React maintains a fast in-memory
representation of the DOM. render() methods return a description of the DOM, and React
can diff this description with the in-memory representation to compute the fastest way to
update the browser.

Additionally, React implements a full synthetic event system such that all event objects are
guaranteed to conform to the W3C spec despite browser quirks, and everything bubbles
consistently and in a performant way cross-browser. You can even use some HTML5 events in
IE8!

Most of the time you should stay within React's "faked browser" world since it's more
performant and easier to reason about. However, sometimes you simply need to access the
underlying API, perhaps to work with a third-party library like a jQuery plugin. React provides
escape hatches for you to use the underlying DOM API directly.

Refs and getDOMNode()
To interact with the browser, you'll need a reference to a DOM node. Every mounted React
component has a getDOMNode() function which you can call to get a reference to it.

Note:

1 of 6

been placed in the DOM). If you try to call this on a component that has not been
mounted yet (like calling getDOMNode() in render() on a component that has yet to be
created) an exception will be thrown.

In order to get a reference to a React component, you can either use this to get the current
React component, or you can use refs to refer to a component you own. They work like this:

/** @jsx React.DOM */

var MyComponent = React.createClass({
 handleClick: function() {
 // Explicitly focus the text input using the raw DOM API.
 this.refs.myTextInput.getDOMNode().focus();
 },
 render: function() {
 // The ref attribute adds a reference to the component to
 // this.refs when the component is mounted.
 return (
 <div>
 <input type="text" ref="myTextInput" />
 <input
 type="button"
 value="Focus the text input"
 onClick={this.handleClick}
 />
 </div>
);
 }
});

React.renderComponent(
 <MyComponent />,

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

Code

2 of 6

More About Refs
To learn more about refs, including ways to use them effectively, see our more about refs
documentation.

Component Lifecycle
Components have three main parts of their lifecycle:

Mounting: A component is being inserted into the DOM.
Updating: A component is being re-rendered to determine if the DOM should be
updated.
Unmounting: A component is being removed from the DOM.

React provides lifecycle methods that you can specify to hook into this process. We provide
will methods, which are called right before something happens, and did methods which are
called right after something happens.

Mounting

getInitialState(): object is invoked before a component is mounted. Stateful
components should implement this and return the initial state data.
componentWillMount() is invoked immediately before mounting occurs.
componentDidMount(DOMElement rootNode) is invoked immediately after mounting
occurs. Initialization that requires DOM nodes should go here.

Updating

componentWillReceiveProps(object nextProps) is invoked when a mounted
component receives new props. This method should be used to compare this.props

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

3 of 6

when a component decides whether any changes warrant an update to the DOM.
Implement this as an optimization to compare this.props with nextProps and
this.state with nextState and return false if React should skip updating.
componentWillUpdate(object nextProps, object nextState) is invoked immediately
before updating occurs. You cannot call this.setState() here.
componentDidUpdate(object prevProps, object prevState, DOMElement rootNode) is
invoked immediately after updating occurs.

Unmounting

componentWillUnmount() is invoked immediately before a component is unmounted
and destroyed. Cleanup should go here.

Mounted Methods

Mounted composite components also support the following methods:

getDOMNode(): DOMElement can be invoked on any mounted component in order to
obtain a reference to its rendered DOM node.
forceUpdate() can be invoked on any mounted component when you know that some
deeper aspect of the component's state has changed without using this.setState() .

Note:

The DOMElement rootNode argument of componentDidMount() and
componentDidUpdate() is a convenience. The same node can be obtained by calling
this.getDOMNode() .

Browser Support and Polyfills
At Facebook, we support older browsers, including IE8. We've had polyfills in place for a long

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

4 of 6

← Prev Next →

example, instead of seeing +new Date() , we can just write Date.now() . Since the open
source React is the same as what we use internally, we've carried over this philosophy of
using forward thinking JS.

In addition to that philosophy, we've also taken the stance that we, as authors of a JS library,
should not be shipping polyfills as a part of our library. If every library did this, there's a good
chance you'd be sending down the same polyfill multiple times, which could be a sizable
chunk of dead code. If your product needs to support older browsers, chances are you're
already using something like es5-shim.

Polyfills Needed to Support Older Browsers

Array.isArray
Array.prototype.forEach
Array.prototype.indexOf
Function.prototype.bind
Date.now
Array.prototype.some (also in es5-shim.js)

All of these can be polyfilled using es5-shim.js from https://github.com/kriskowal/es5-shim.

console.* - Only needed when not using the minified build. If you need to polyfill this,
try https://github.com/paulmillr/console-polyfill.
Object.create - Provided in es5-sham.js @ https://github.com/kriskowal/es5-shim.

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

5 of 6

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)Post to Facebook

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

6 of 6

