QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSXin Depth

JSX Gotchas
Interactivity and Dynamic Uls
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Reusable Components

When designing interfaces, break down the common design elements (buttons, form fields,
layout components, etc) into reusable components with well-defined interfaces. That way, the
next time you need to build some Ul you can write much less code, which means faster
development time, less bugs, and less bytes down the wire.

Prop Validation

As your app grows it's helpful to ensure that your components are used correctly. We do this
by allowing you to specify propTypes. React.PropTypes exports a range of validators that can
be used to make sure the data you receive is valid. When an invalid value is provided for a
prop, an error will be thrown. Here is an example documenting the different validators
provided:

Code

React.createClass({
propTypes: {
// You can declare that a prop is a specific JS primitive. By default, these
// are all optional.
optionalArray: React.PropTypes.array,
optionalBool: React.PropTypes.bool,
optionalFunc: React.PropTypes.func,
optionalNumber: React.PropTypes.number,
optionalObject: React.PropTypes.object,
optionalString: React.PropTypes.string,

// You can ensure that your prop is limited to specific values by treating
// it as an enum.
optionalEnum: React.PropTypes.oneOf(['News','Photos']),

20f 5

DOCS SUPPORT DOWNLOAD BLOG GITHUB

/99 > D ualiceul upel GToTTTTTTT

someClass: React.PropTypes.instanceOf(SomeClass),

// You can chain any of the above with isRequired to make sure an error -s
// thrown +if the prop 1isn't provided.
requiredFunc: React.PropTypes.func.isRequired

// You can also specify a custom validator.
customProp: function(props, propName, componentName) {
if (!/matchme/.test(props[propName])) {
throw new Error('Validation failed!')

b
/*x o0 %/
1)

Default Prop Values

React lets you define default values for your props in a very declarative way:

Code

var ComponentWithDefaultProps = React.createClass({
getDefaultProps: function() {
return {
value: 'default value'
s
}
/*x .. %/
1)

3of5

DOCS SUPPORT DOWNLOAD BLOG GITHUB

use your props without having to write repetitive and fragile code to handle that yourself.

Transferring Props: A Shortcut

A common type of React component is one that extends a basic HTML in a simple way. Often
you'll want to copy any HTML attributes passed to your component to the underlying HTML
element to save typing. React provides transferPropsTo() to do just this.

Code

/** @jsx React.DOM x/

var CheckLink = React.createClass({
render: function() {
// transferPropsTo() will take any props passed to CheckLink
// and copy them to <a>
return this.transferPropsTo(<a>{'V '}{this.props.children});
}
1)

React.renderComponent(
<CheckLink href="javascript:alert('Hello, world!"') ;">
Click here!
</CheckLink>,
document.getElementById('example')

)3

Mixins
Components are the best way to reuse code in React, but sometimes very different
components may share some common functionality. These are sometimes called cross-cutting

4 of 5

React

DOCS SUPPORT DOWNLOAD BLOG GITHUB

use setInterval(), butit's important to cancel your interval when you don't need it anymore
to save memory. React provides lifecycle methods that let you know when a component is
about to be created or destroyed. Let's create a simple mixin that uses these methods to
provide an easy setInterval() function that will automatically get cleaned up when your
component is destroyed.

Code

/** @jsx React.DOM x/

var SetIntervalMixin = {
componentWillMount: function() {
this.intervals = [];
}’
setInterval: function() {
this.intervals.push(setInterval.apply(null, arguments));
I
componentWillUnmount: function() {
this.intervals.map(clearInterval);
}
}s

var TickTock = React.createClass({
mixins: [SetIntervalMixin], // Use the mixin
getInitialState: function() {
return {seconds: 0};
I
componentDidMount: function() {
this.setInterval(this.tick, 1000); // Call a method on the mixin
}’
tick: function() {
this.setState({seconds: this.state.seconds + 1});
I

render: function() {

DOCS SUPPORT DOWNLOAD BLOG GITHUB

nTac o Had> wechh Uil ||g TOT LEIT 1O eDLALT « DCLUHUD T DTUUNHUD
)
3
})
3

React.renderComponent(
<TickTock />,

document.getElementById('example')
)3

A nice feature of mixins is that if a component is using multiple mixins and several mixins
define the same lifecycle method (i.e. several mixins want to do some cleanup when the
component is destroyed), all of the lifecycle methods are guaranteed to be called.

« Prev Next —

Add a comment...

Post to Facebook Posting as Stoyan Stefanov (Change)

Facebook social plugin

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

50f 5

