
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Reusable Components
When designing interfaces, break down the common design elements (buttons, form fields,
layout components, etc) into reusable components with well-defined interfaces. That way, the
next time you need to build some UI you can write much less code, which means faster
development time, less bugs, and less bytes down the wire.

Prop Validation
As your app grows it's helpful to ensure that your components are used correctly. We do this
by allowing you to specify propTypes . React.PropTypes exports a range of validators that can
be used to make sure the data you receive is valid. When an invalid value is provided for a
prop, an error will be thrown. Here is an example documenting the different validators
provided:

React.createClass({
 propTypes: {
 // You can declare that a prop is a specific JS primitive. By default, these
 // are all optional.
 optionalArray: React.PropTypes.array,
 optionalBool: React.PropTypes.bool,
 optionalFunc: React.PropTypes.func,
 optionalNumber: React.PropTypes.number,
 optionalObject: React.PropTypes.object,
 optionalString: React.PropTypes.string,

 // You can ensure that your prop is limited to specific values by treating
 // it as an enum.
 optionalEnum: React.PropTypes.oneOf(['News','Photos']),

Code

1 of 5

Default Prop Values
React lets you define default values for your props in a very declarative way:

 // JS's instanceof operator.
 someClass: React.PropTypes.instanceOf(SomeClass),

 // You can chain any of the above with isRequired to make sure an error is
 // thrown if the prop isn't provided.
 requiredFunc: React.PropTypes.func.isRequired

 // You can also specify a custom validator.
 customProp: function(props, propName, componentName) {
 if (!/matchme/.test(props[propName])) {
 throw new Error('Validation failed!')
 }
 }
 },
 /* ... */
});

var ComponentWithDefaultProps = React.createClass({
 getDefaultProps: function() {
 return {
 value: 'default value'
 };
 }
 /* ... */
});

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

2 of 5

will have a value if it was not specified by the parent component. This allows you to safely just
use your props without having to write repetitive and fragile code to handle that yourself.

Transferring Props: A Shortcut
A common type of React component is one that extends a basic HTML in a simple way. Often
you'll want to copy any HTML attributes passed to your component to the underlying HTML
element to save typing. React provides transferPropsTo() to do just this.

Mixins
Components are the best way to reuse code in React, but sometimes very different
components may share some common functionality. These are sometimes called cross-cutting

/** @jsx React.DOM */

var CheckLink = React.createClass({
 render: function() {
 // transferPropsTo() will take any props passed to CheckLink
 // and copy them to <a>
 return this.transferPropsTo(<a>{'√ '}{this.props.children});
 }
});

React.renderComponent(
 <CheckLink href="javascript:alert('Hello, world!');">
 Click here!
 </CheckLink>,
 document.getElementById('example')
);

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

3 of 5

One common use case is a component wanting to update itself on a time interval. It's easy to
use setInterval() , but it's important to cancel your interval when you don't need it anymore
to save memory. React provides lifecycle methods that let you know when a component is
about to be created or destroyed. Let's create a simple mixin that uses these methods to
provide an easy setInterval() function that will automatically get cleaned up when your
component is destroyed.

/** @jsx React.DOM */

var SetIntervalMixin = {
 componentWillMount: function() {
 this.intervals = [];
 },
 setInterval: function() {
 this.intervals.push(setInterval.apply(null, arguments));
 },
 componentWillUnmount: function() {
 this.intervals.map(clearInterval);
 }
};

var TickTock = React.createClass({
 mixins: [SetIntervalMixin], // Use the mixin
 getInitialState: function() {
 return {seconds: 0};
 },
 componentDidMount: function() {
 this.setInterval(this.tick, 1000); // Call a method on the mixin
 },
 tick: function() {
 this.setState({seconds: this.state.seconds + 1});
 },
 render: function() {

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

Code

4 of 5

← Prev Next →

A nice feature of mixins is that if a component is using multiple mixins and several mixins
define the same lifecycle method (i.e. several mixins want to do some cleanup when the
component is destroyed), all of the lifecycle methods are guaranteed to be called.

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

 React has been running for {this.state.seconds} seconds.
 </p>
);
 }
});

React.renderComponent(
 <TickTock />,
 document.getElementById('example')
);

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)

Add a comment...

Post to Facebook

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

5 of 5

