
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Reference

Examples

Production Apps

All of Instagram.com is built on React.
Many components on Facebook.com, including the commenting interface, ads creation
flows, and page insights.
Khan Academy is using React for its question editor.

Sample Code

We've included a step-by-step comment box tutorial.
The React starter kit includes several examples which you can view online in our GitHub
repository.
reactapp is a simple app template to get you up-and-running quickly with React.
React one-hour email goes step-by-step from a static HTML mock to an interactive email
reader (written in just one hour!)
Rendr + React app template demonstrates how to use React's server rendering
capabilities.

API

React

React is the entry point to the React framework. If you're using one of the prebuilt packages

1 of 8

React.DOM

React.DOM provides all of the standard HTML tags needed to build a React app. You generally
don't use it directly; instead, just include it as part of the /** @jsx React.DOM */ docblock.

React.initializeTouchEvents

Configure React's event system to handle touch events on mobile devices.

React.createClass

Creates a component given a specification. A component implements a render method which
returns one single child. That child may have an arbitrarily deep child structure. One thing that
makes components different than standard prototypal classes is that you don't need to call
new on them. They are convenience wrappers that construct backing instances (via new) for
you.

React.renderComponent

Renders a React component into the DOM in the supplied container .

If the React component was previously rendered into container , this will perform an update
on it and only mutate the DOM as necessary to reflect the latest React component.

React.unmountAndReleaseReactRootNode

initializeTouchEvents(boolean shouldUseTouch)

Code

function createClass(object specification)

Code

ReactComponent renderComponent(ReactComponent container, DOMElement container)

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

2 of 8

Remove a mounted React component from the DOM and clean up its event handlers and
state.

React.renderComponentToString

Render a component to its initial HTML. This should only be used on the server. React will call
callback with an HTML string when the markup is ready. You can use this method to create
static site generators, or you can generate HTML on the server and send it down to have a
very fast initial page load. If you call React.renderComponent() on a node that already has this
server-rendered markup, React will preserve it and only attach event handlers, allowing you to
have a very performant first-load experience.

AbstractEvent

Your event handlers will be passed instances of AbstractEvent , a cross-browser wrapper
around the browser's native event. It has the same interface as the browser's native event
(such as stopPropagation() and preventDefault()) except they work exactly the same
across all browsers.

If you find that you need the underlying browser event for some reason, simply use the
nativeEvent attribute to get it.

ReactComponent

Component classses created by createClass() return instances of ReactComponent when
called. Most of the time when you're using React you're either creating or consuming
ReactComponent s.

getDOMNode

unmountAndReleaseReactRootNode(DOMElement container)

renderComponentToString(ReactComponent component, function callback)

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

3 of 8

If this component has been mounted into the DOM, this returns the corresponding native
browser DOM element. This method is useful for reading values out of the DOM, such as form
field values and performing DOM measurements.

setProps

When you're integrating with an external JavaScript application you may want to signal a
change to a React component rendered with renderComponent() . Simply call setProps() to
change its properties and trigger a re-render.

Note:

This method can only be called on a root-level component. That is, it's only available on
the component passed directly to renderComponent() and none of its children. If
you're inclined to use setProps() on a child component, instead take advantage of
reactive updates and pass the new prop to the child component when it's created in
render() .

replaceProps

Like setProps() but deletes any pre-existing props that are not in nextProps.

transferPropsTo

DOMElement getDOMNode()

setProps(object nextProps)

Code

replaceProps(object nextProps)

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

4 of 8

Transfer properties from this component to a target component that have not already been set
on the target component. This is usually used to pass down properties to the returned root
component. targetComponent , now updated with some new props is returned as a
convenience.

setState

Merges nextState with the current state. This is the primary method you use to trigger UI
updates from event handlers and server request callbacks. In addition, you can supply an
optional callback function that is executed once setState is completed.

Note:

NEVER mutate this.state directly. As calling setState() afterwards may replace the
mutation you made. Treat this.state as if it were immutable.

Note:

setState() does not immediately mutate this.state but creates a pending state
transition. Accessing this.state after calling this method can potentially return the
existing value.

Note:

There is no guarantee of synchronous operation of calls to setState and calls may be
batched for performance gains.

replaceState

ReactComponent transferPropsTo(ReactComponent targetComponent)

setState(object nextState[, function callback])

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

5 of 8

Like setState() but deletes any pre-existing state keys that are not in nextState.

forceUpdate()

If your render() method reads from something other than this.props or this.state you'll
need to tell React when it needs to re-run render() . Use forceUpdate() to cause React to
automatically re-render. This will cause render() to be called on the component and all of its
children but React will only update the DOM if the markup changes.

Normally you should try to avoid all uses of forceUpdate() and only read from this.props
and this.state in render() . This makes your application much simpler and more efficient.

Note:

There is no guarantee of synchronous operation of calls to forceUpdate and calls may
be batched for performance gains.

Lifecycle methods

replaceState(object nextState[, function callback])

forceUpdate([function callback])

Code

object getInitialState()
componentWillMount()
componentDidMount(DOMElement domNode)
componentWillReceiveProps(object nextProps)
boolean shouldComponentUpdate(object nextProps, object nextState)
componentWillUpdate(object nextProps, object nextState)
ReactComponent render()
componentDidUpdate(object prevProps, object prevState, DOMElement domNode)

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

Code

6 of 8

← Prev

See the working with the browser documentation for more details on these lifecycle methods.

DOM Differences
React has implemented a browser-independent events and DOM system for performance and
cross-browser compatibility reasons. We took the opportunity to clean up a few rough edges
in browser DOM implementations.

All events (including submit) bubble correctly per the W3C spec
All event objects conform to the W3C spec
All DOM properties and attributes (including event handlers) should be camelCased to
be consistent with standard JavaScript style. We intentionally break with the spec here,
since the spec is inconsistent.
The style attribute accepts a JavaScript object with camelCased properties rather than
a CSS string. This is consistent with the DOM style JavaScript property, is more
efficient, and prevents XSS security holes.
onChange behaves as you would expect it to: whenever a form field is changed this
event is fired rather than inconsistently on blur. We intentionally break from existing
browser behavior because onChange is a misnomer for its behavior and React relies on
this event to react to user input in real time.

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)

Add a comment...

Post to Facebook

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

7 of 8

A Facebook & Instagram collaboration. © 2013 Facebook Inc.
DOCS SUPPORT DOWNLOAD BLOG GITHUB React

8 of 8

