
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Multiple Components
So far, we've looked at how to write a single component to display data and handle user input.
Next let's examine one of React's finest features: composability.

Motivation: Separation of Concerns
By building modular components that reuse other components with well-defined interfaces,
you get much of the same benefits that you get by using functions or classes. Specifically you
can separate the different concerns of your app however you please simply by building new
components. By building a custom component library for your application, you are expressing
your UI in a way that best fits your domain.

Composition Example
Let's create a simple Avatar component which shows a profile picture and username using the
Facebook Graph API.

/** @jsx React.DOM */

var Avatar = React.createClass({
  render: function() {
    return (
      <div>
        <ProfilePic username={this.props.username} />
        <ProfileLink username={this.props.username} />
      </div>
    );

Code

1 of 6



Ownership
In the above example, instances of Avatar  own instances of ProfilePic  and ProfileLink .
In React, an owner is the component that sets the props  of other components. More formally,
if a component X  is created in component Y 's render()  method, it is said that X  is owned by
Y . As discussed earlier, a component cannot mutate its props  — they are always consistent
with what its owner sets them to. This key property leads to UIs that are guaranteed to be
consistent.

var ProfilePic = React.createClass({
  render: function() {
    return (
      <img src={'http://graph.facebook.com/' + this.props.username + '/picture'} />
    );
  }
});

var ProfileLink = React.createClass({
  render: function() {
    return (
      <a href={'http://www.facebook.com/' + this.props.username}>
        {this.props.username}
      </a>
    );
  }
});

React.renderComponent(
  <Avatar username="pwh" />,
  document.getElementById('example')
);

DOCS  SUPPORT  DOWNLOAD  BLOG  GITHUB React

2 of 6



relationship. The owner-ownee relationship is specific to React, while the parent-child
relationship is simply the one you know and love from the DOM. In the example above,
Avatar  owns the div , ProfilePic  and ProfileLink  instances, and div  is the parent (but
not owner) of the ProfilePic  and ProfileLink  instances.

Children
When you create a React component instance, you can include additional React components
or JavaScript expressions between the opening and closing tags like this:

Parent  can read its children by accessing the special this.props.children  prop.

Child Reconciliation

Reconciliation is the process by which React updates the DOM with each new render pass. In
general, children are reconciled according to the order in which they are rendered. For
example, suppose two render passes generate the following respective markup:

<Parent><Child /></Parent>

Code

// Render Pass 1
<Card>
  <p>Paragraph 1</p>
  <p>Paragraph 2</p>
</Card>
// Render Pass 2
<Card>
  <p>Paragraph 2</p>
</Card>

Code

DOCS  SUPPORT  DOWNLOAD  BLOG  GITHUB React

3 of 6



changing the text content of the first child and destroying the last child. React reconciles
according to the order of the children.

Stateful Children

For most components, this is not a big deal. However, for stateful components that maintain
data in this.state  across render passes, this can be very problematic.

In most cases, this can be sidestepped by hiding elements instead of destroying them:

Dynamic Children

The situation gets more complicated when the children are shuffled around (as in search
results) or if new components are added onto the front of the list (as in streams). In these
cases where the identity and state of each child must be maintained across render passes,
you can uniquely identify each child by assigning it a key :

// Render Pass 1
<Card>
  <p>Paragraph 1</p>
  <p>Paragraph 2</p>
</Card>
// Render Pass 2
<Card>
  <p style={{display: 'none'}}>Paragraph 1</p>
  <p>Paragraph 2</p>
</Card>

Code

  render: function() {
    var results = this.props.results;
    return (

DOCS  SUPPORT  DOWNLOAD  BLOG  GITHUB React

Code

4 of 6



When React reconciles the keyed children, it will ensure that any child with key  will be
reordered (instead of clobbered) or destroyed (instead of reused).

Data Flow
In React, data flows from owner to owned component through props  as discussed above.
This is effectively one-way data binding: owners bind their owned component's props to some
value the owner has computed based on its props  or state . Since this process happens
recursively, data changes are automatically reflected everywhere they are used.

A Note on Performance
You may be thinking that it's expensive to react to changing data if there are a large number of
nodes under an owner. The good news is that JavaScript is fast and render()  methods tend
to be quite simple, so in most applications this is extremely fast. Additionally, the bottleneck is
almost always the DOM mutation and not JS execution and React will optimize this for you
using batching and change detection.

However, sometimes you really want to have fine-grained control over your performance. In
that case, simply override shouldComponentUpdate()  to return false when you want React to
skip processing of a subtree. See the React reference docs for more information.

Note:

If shouldComponentUpdate()  returns false when data has actually changed, React can't

          return <li key={result.id}>{result.text}</li>;
        })}
      </ol>
    );
  }

DOCS  SUPPORT  DOWNLOAD  BLOG  GITHUB React

5 of 6



← Prev Next →

how fast JavaScript is relative to the DOM.

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)

Add a comment...

Post to Facebook 

DOCS  SUPPORT  DOWNLOAD  BLOG  GITHUB React

6 of 6


