QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSXin Depth

JSX Gotchas
Interactivity and Dynamic Uls
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Multiple Components

So far, we've looked at how to write a single component to display data and handle user input.
Next let's examine one of React's finest features: composability.

Motivation: Separation of Concerns

By building modular components that reuse other components with well-defined interfaces,
you get much of the same benefits that you get by using functions or classes. Specifically you
can separate the different concerns of your app however you please simply by building new
components. By building a custom component library for your application, you are expressing
your Ul in a way that best fits your domain.

Composition Example

Let's create a simple Avatar component which shows a profile picture and username using the
Facebook Graph API.

Code

/** @jsx React.DOM x/

var Avatar = React.createClass({
render: function() {
return (
<div>
<ProfilePic username={this.props.username} />
<ProfileLink username={this.props.username} />
</div>

)5

20f6

DOCS SUPPORT DOWNLOAD BLOG GITHUB

var ProfilePic = React.createClass({
render: function() {
return (
<img src={'http://graph.facebook.com/"' + this.props.username + '/picture'} ,
)
}
1)

var ProfileLink = React.createClass({
render: function() {
return (

{this.props.username}

)
}
1)

React.renderComponent(
<Avatar username="pwh" />,
document.getElementById('example')

)5

Ownership

In the above example, instances of Avatar own instances of ProfilePic and ProfileLink.
In React, an owner is the component that sets the props of other components. More formally,
if a component X is created in component Y's render() method, it is said that x is owned by
Y. As discussed earlier, a component cannot mutate its props — they are always consistent
with what its owner sets them to. This key property leads to Uls that are guaranteed to be
consistent.

30f6

DOCS SUPPORT DOWNLOAD BLOG GITHUB

relationship is simply the one you know and love from the DOM. In the example above,
Avatar owns the div, ProfilePic and ProfileLink instances, and div is the parent (but
not owner) of the ProfilePic and ProfilelLink instances.

Children

When you create a React component instance, you can include additional React components
or JavaScript expressions between the opening and closing tags like this:

Code

<Parent><Child /></Parent>

Parent can read its children by accessing the special this.props.children prop.

Child Reconciliation

Reconciliation is the process by which React updates the DOM with each new render pass. In
general, children are reconciled according to the order in which they are rendered. For
example, suppose two render passes generate the following respective markup:

Code

// Render Pass 1
<Card>

<p>Paragraph 1</p>

<p>Paragraph 2</p>
</Card>
// Render Pass 2
<Card>

<p>Paragraph 2</p>
</Card>

4 of 6

DOCS SUPPORT DOWNLOAD BLOG GITHUB

according to the order of the children.

Stateful Children

For most components, this is not a big deal. However, for stateful components that maintain
data in this.state across render passes, this can be very problematic.

In most cases, this can be sidestepped by hiding elements instead of destroying them:
Code

// Render Pass 1
<Card>
<p>Paragraph 1</p>
<p>Paragraph 2</p>
</Card>
// Render Pass 2
<Card>
<p style={{display: 'none'}}>Paragraph 1</p>
<p>Paragraph 2</p>
</Card>

Dynamic Children

The situation gets more complicated when the children are shuffled around (as in search
results) or if new components are added onto the front of the list (as in streams). In these
cases where the identity and state of each child must be maintained across render passes,
you can uniquely identify each child by assigning it a key :

Code

render: function() {
var results = this.props.results;

return (

50f6

DOCS SUPPORT DOWNLOAD BLOG GITHUB

TSLulil SU Ry — 11 ESTUTTTTU T -~ 11 ©€2ULL. LTALS N/ LIry,

98

)3

When React reconciles the keyed children, it will ensure that any child with key will be
reordered (instead of clobbered) or destroyed (instead of reused).

Data Flow

In React, data flows from owner to owned component through props as discussed above.
This is effectively one-way data binding: owners bind their owned component's props to some
value the owner has computed based on its props oOr state. Since this process happens
recursively, data changes are automatically reflected everywhere they are used.

A Note on Performance

You may be thinking that it's expensive to react to changing data if there are a large number of
nodes under an owner. The good news is that JavaScript is fast and render () methods tend
to be quite simple, so in most applications this is extremely fast. Additionally, the bottleneck is
almost always the DOM mutation and not JS execution and React will optimize this for you
using batching and change detection.

However, sometimes you really want to have fine-grained control over your performance. In
that case, simply override shouldComponentUpdate() to return false when you want React to
skip processing of a subtree. See the React reference docs for more information.

Note:

If shouldComponentUpdate() returns false when data has actually changed, React can't

6 of 6

A Facebook & Instagram collaboration.

DOCS SUPPORT DOWNLOAD BLOG GITHUB

HOW Idst JdvdoCLlipLis reriduve OTTTe DOV

«— Prev

Add a comment...

Post to Facebook

Facebook social plugin

Next —

Posting as Stoyan Stefanov (Change)

© 2013 Facebook Inc.

