
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

More About Refs
After returning the structure of your UI from the render method, you may find yourself wanting
to "reach out" and invoke methods on component instances returned from render. Often,
doing something like this isn't necessary for making data flow through your application,
because the Reactive data flow always ensures that the most recent props are sent to each
child that is output from render() . However there are a few cases, where it still might be
necessary or beneficial.

Consider the case when you wish to tell an <input /> element (that exists within your
instances sub-hierarchy) to focus after you update its value to be the empty string, '' .

 var App = React.createClass({
 getInitialState: function() {
 return {userInput: ''};
 },
 handleKeyUp: function(e) {
 this.setState({userInput: e.target.value});
 },
 clearAndFocusInput: function() {
 this.setState({userInput: ''}); // Clear the input
 // We wish to focus the <input /> now!
 },
 render: function() {
 return (
 <div>
 <div onClick={this.clearAndFocusInput}>
 Click To Focus and Reset
 </div>
 <input

Code

1 of 6

Notice how, in this example, we want to "tell" the input something - something that it cannot
infer from it's props over time. In this case we want to "tell" it that it should now become
focused. However, there are some challenges. What is returned from render() ` is not your
actual composition of "child" components, it is merely a description of the children at a
particular instance in time - a snapshot, if you will.

Note:

Remember, what you return from render() is not your actual rendered children
instances. What you return from render() is merely a description of the children
instances in your component's sub-hierarchy at a particular moment in time.

This means that you should never "hold onto" something that you return from render() and
then expect it to be anything meaningful.

 />
 </div>
);
 }
 });

 // counterexample: DO NOT DO THIS!
 render: function() {
 var myInput = <input />; // I'm going to try to call methods on this
 this.rememberThisInput = myInput; // input at some point in the future! YAY!
 return (
 <div>
 <div>...</div>
 {myInput}
 </div>
);

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

Code

2 of 6

In this counterexample, the <input /> is merely a description of an <input /> . This
description is used to create a real backing instance for the <input /> .

So how do we talk to the real backing instance of the input?

The ref Attribute
React supports a very special property that you can attach to any component that is output
from render() . This special property allows you to refer to the corresponding backing
instance of anything returned from render() . It is always guaranteed to be the proper
instance, at any point in time.

It's as simple as:

1. Assign a ref attribute to anything returned from render such as:

2. In some other code (typically event handler code), access the backing instance via
this.refs as in:

Completing the Example

 <input ref="myInput" />

Code

 this.refs.myInput

Code

 var App = React.createClass({
 getInitialState: function() {
 return {userInput: ''};

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

Code

3 of 6

In this example, our render function returns a description of an <input /> instance. But the
true instance is accessed via this.refs.theInput . As long as a child component with
ref="theInput" is returned from render, this.refs.theInput will access the proper
instance. This even works on higher level (non-DOM) components such as <Typeahead
ref="myTypeahead" /> .

Summary
Refs are a great way to send a message to a particular child instance in a way that would be
inconvenient to do via streaming Reactive props and state . They should, however, not be

 this.setState({userInput: e.target.value});
 },
 clearAndFocusInput: function() {
 this.setState({userInput: ''}); // Clear the input
 this.refs.theInput.getDOMNode().focus(); // Boom! Focused!
 },
 render: function() {
 return (
 <div>
 <div onClick={this.clearAndFocusInput}>
 Click To Focus and Reset
 </div>
 <input
 ref="theInput"
 value={this.state.userInput}
 onKeyUp={this.handleKeyUp}
 />
 </div>
);
 }
 });

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

4 of 6

← Prev Next →

Benefits:

You can define any public method on your component classes (such as a reset method
on a Typeahead) and call those public methods through refs (such as
this.refs.myTypeahead.reset()).
Performing DOM measurements almost always requires reaching out to a "native"
component such as <input /> and accessing its underlying DOM node via
this.refs.myInput.getDOMNode() . Refs are one of the only practical ways of doing this
reliably.
Refs are automatically book-kept for you! If that child is destroyed, its ref is also
destroyed for you. No worrying about memory here (unless you do something crazy to
retain a reference yourself).

Cautions:

Never access refs inside of any component's render method - or while any component's
render method is even running anywhere in the call stack.
If you want to preserve Google Closure Compiler Crushing resilience, make sure to
never access as a property what was specified as a string. This means you must access
using this.refs['myRefString'] if your ref was defined as ref="myRefString" .
If you have not programmed several apps with React, your first inclination is usually
going to be to try to use refs to "make things happen" in your app. If this is the case, take
a moment and think more critically about where state should be owned in the
component hierarchy. Often, it becomes clear that the proper place to "own" that state is
at a higher level in the hierarchy. Placing the state there often eliminates any desire to
use ref s to "make things happen" - instead, the data flow will usually accomplish your
goal.

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

5 of 6

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)Post to Facebook

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

6 of 6

