QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX'in Depth

JSX Gotchas
Interactivity and Dynamic Uls
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

JSX in Depth

JSX'is a JavaScript XML syntax transform recommended for use with React.

Why JSX?
React works out of the box without JSX. Simply construct your markup using the functions on
React.DOM. For example, here's how to construct a simple link:

Code

var link = React.DOM.a({href: 'http://facebook.github.io/react'}, 'React');

We recommend using JSX for many reasons:

e |t's easier to visualize the structure of the DOM.
e Designers are more comfortable making changes.
e |t's familiar for those who have used MXML or XAML.

The Transform

JSX transforms from an XML-like syntax into native JavaScript. XML elements and attributes
are transformed into function calls and objects, respectively.

Code

var Nav;

// Input (3ISX):

var app = <Nav color="blue" />;
// Output (3JS):

var app = Nav({color:"blue"});

2 of 7

DOCS SUPPORT DOWNLOAD BLOG GITHUB

JSX also allows specifying children using XML syntax:
Code

var Nav, Profile;

// Input (JSX):

var app = <Nav color="blue"><Profile>click</Profile></Nav>;
// Output (3JS):

var app = Nav({color:"blue"}, Profile(null, "click"));

Use the JSX Compiler to try out JSX and see how it desugars into native JavaScript.

If you want to use JSX, the Getting Started guide shows how to setup compilation.

Note:

Details about the code transform are given here to increase understanding, but your
code should not rely on these implementation details.

React and JSX

React and JSX are independent technologies, but JSX was primarily built with React in mind.
The two valid uses of JSX are:

e To construct instances of React DOM components (React.DOM. x).
e To construct instances of composite components created with React.createClass() .

React DOM Components

To construct a <div> is to create a variable that refers to React.DOM.dqv .

30f7

DOCS SUPPORT DOWNLOAD BLOG GITHUB

var app = <div className="appClass">Hello, React!</div>;

React Component Components

To construct an instance of a composite component, create a variable that references the
class.

Code

var MyComponent = React.createClass({/*x...*/});
var app = <MyComponent someProperty={true} />;

See Component Basics to learn more about components.

Note:

Since JSX is JavaScript, identifiers such as class and for are discouraged as XML
attribute names. Instead, React DOM components expect attributes like className and

htmlFor , respectively.

DOM Convenience

Having to define variables for every type of DOM element can get tedious (e.g. var div,
span, hl, h2, ...). JSX provides a convenience to address this problem by allowing you to
specify a variable in an @jsx docblock field. JSX will use that field to find DOM components.

Code

[**
* @jsx React.DOM
*/

4 of 7

DOCS SUPPORT DOWNLOAD BLOG GITHUB

vai LI cc — \I‘CGV/\DPGII //\/I‘ICIV/,
// Output (3S):
var tree = Nav(null, React.DOM.span(null));

Remember:

JSX simply transforms elements into function calls and has no notion of the DOM. The
docblock parameter is only a convenience to resolve the most commonly used
elements. In general, JSX has no notion of the DOM.

JavaScript Expressions

Attribute Expressions

To use a JavaScript expression as an attribute value, wrap the expression in a pair of curly
braces ({}) instead of quotes ("").

Code

// Input (JSX):

var person = <Person name={window.isLoggedIn ? window.name : "'} />;
// Output (3JS):
var person = Person({name: window.isLoggedIn ? window.name : ''});

Child Expressions

Likewise, JavaScript expressions may be used to express children:
Code

// Input (JSX):

50f 7

DOCS SUPPORT DOWNLOAD BLOG GITHUB

vat CulrrLciire — wulrca i priua e, V\IIIIUUV\I.IDLUSBCUJ.II . nNav-o rrae ey . I_Uslll\llu\.l.}/,

Comments

It's easy to add comments within your JSX; they're just JS expressions:

Code

var content = <Container>{/* this is a comment */}<Nav /></Container>;

Tooling

Beyond the compilation step, JSX does not require any special tools.

e Many editors already include reasonable support for JSX (Vim, Emacs js2-mode).
e Linting provides accurate line numbers after compiling without sourcemaps.
e Elements use standard scoping so linters can find usage of out-of-scope components.

Prior Work

JSX is similar to several other JavaScript embedded XML language proposals/projects. Some
of the features of JSX that distinguish it from similar efforts include:

e JSX is a simple syntactic transform.
e JSX neither provides nor requires a runtime library.
e JSX does not alter or add to the semantics of JavaScript.

JSXis similar to HTML, but not exactly the same. See JSX gotchas for some key differences.

6 of 7

DOCS SUPPORT DOWNLOAD BLOG GITHUB

Post to Facebook Posting as Stoyan Stefanov (Change)

Jakub Malinowski - Akademia Gérniczo-Hutnicza
ternary if?: like they show here should be sufficient in most cases, you can even execute code this way.
Reply - 1 - Like - Follow Post - July 21 at 3:07am

Peter Riboprotein - Seattle, Washington

How should | make if statements with React?
For example, if | have state.editing” | want to be able to provide one JSX block, and if it's not then |
want to provide a second JSX block.

I could have an if statement outside of the JSX blocks, but then | end up repeating a lot of the parent
objects. (My wrapping divs and such.)

Is there an existing pattern for this? | could make a custom block like this:
<if expression={this.state.foobar}><Children></if>
Is that recommend?

Reply - Like - Follow Post - July 19 at 6:19pm

Peter Riboprotein - Seattle, Washington

okay-- here's the pattern I'm using:

if expression
inner = <derp />.
else

inner = <herp />.

return " <div class="wrapping>.
{inner}.
</div>".
Reply - Like - Follow Post - Edited - July 20 at 1:06am
Christopher Chedeau - Follow - User Interface Engineer at Facebook
€ You can do
return <div class="wrapping">
_ {this.state.condition ? <first/> : <second />}

</div>

or

7 of 7

DOCS

SUPPORT DOWNLOAD BLOG GITHUB

