
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Interactivity and Dynamic UIs
You've already learned how to display data with React. Now let's look at how to make our UIs
interactive.

A Simple Example

/** @jsx React.DOM */

var LikeButton = React.createClass({
 getInitialState: function() {
 return {liked: false};
 },
 handleClick: function(event) {
 this.setState({liked: !this.state.liked});
 },
 render: function() {
 var text = this.state.liked ? 'like' : 'unlike';
 return (
 <p onClick={this.handleClick}>
 You {text} this. Click to toggle.
 </p>
);
 }
});

React.renderComponent(
 <LikeButton />,

Code

1 of 5

Event Handling and Synthetic Events
With React you simply pass your event handler as a camelCased prop similar to how you'd do
it in normal HTML. React ensures that all events behave identically in IE8 and above by
implementing a synthetic event system. That is, React knows how to bubble and capture
events according to the spec, and the events passed to your event handler are guaranteed to
be consistent with the W3C spec, regardless of which browser you're using.

If you'd like to use React on a touch device (i.e. a phone or tablet), simply call
React.initializeTouchEvents(true); to turn them on.

Under the Hood: autoBind and Event
Delegation
Under the hood React does a few things to keep your code performant and easy to
understand.

Autobinding: When creating callbacks in JavaScript you usually need to explicitly bind a
method to its instance such that the value of this is correct. With React, every method is
automatically bound to its component instance. React caches the bound method such that it's
extremely CPU and memory efficient. It's also less typing!

Event delegation: React doesn't actually attach event handlers to the nodes themselves.
When React starts up, it starts listening for all events at the top level using a single event
listener. When a component is mounted or unmounted, the event handlers are simply added
or removed from an internal mapping. When an event occurs, React knows how to dispatch it
using this mapping. When there are no event handlers left in the mapping, React's event
handlers are simple no-ops. To learn more about why this is fast, see David Walsh's excellent
blog post.

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

2 of 5

Components are Just State Machines
React thinks of UIs as simple state machines. By thinking of a UI as being in various states and
rendering those states, it's easy to keep your UI consistent.

In React, you simply update a component's state, and then render a new UI based on this new
state. React takes care of updating the DOM for you in the most efficient way.

How State Works
A common way to inform React of a data change is by calling setState(data, callback) .
This method merges data into this.state and re-renders the component. When the
component finishes re-rendering, the optional callback is called. Most of the time you'll never
need to provide a callback since React will take care of keeping your UI up-to-date for you.

What Components Should Have State?
Most of your components should simply take some data from props and render it. However,
sometimes you need to respond to user input, a server request or the passage of time. For
this you use state.

Try to keep as many of your components as possible stateless. By doing this you'll isolate the
state to its most logical place and minimize redundancy, making it easier to reason about your
application.

A common pattern is to create several stateless components that just render data, and have a
stateful component above them in the hierarchy that passes its state to its children via props .
The stateful component encapsulates all of the interaction logic, while the stateless
components take care of rendering data in a declarative way.

What Should Go in State?

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

3 of 5

← Prev Next →

update. In real apps this data tends to be very small and JSON-serializable. When building a
stateful component, think about the minimal possible representation of its state, and only store
those properties in this.state . Inside of render() simply compute any other information you
need based on this state. You'll find that thinking about and writing applications in this way
tends to lead to the most correct application, since adding redundant or computed values to
state means that you need to explicitly keep them in sync rather than rely on React computing
them for you.

What Shouldn't Go in State?
this.state should only contain the minimal amount of data needed to represent your UI's
state. As such, it should not contain:

Computed data: Don't worry about precomputing values based on state — it's easier to
ensure that your UI is consistent if you do all computation within render() . For example,
if you have an array of list items in state and you want to render the count as a string,
simply render this.state.listItems.length + ' list items' in your render()
method rather than storing it on state.
React components: Build them in render() based on underlying props and state.
Duplicated data from props: Try to use props as the source of truth where possible.
Because props can change over time, it's appropriate to store props in state to be able
to know its previous values.

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

4 of 5

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)Post to Facebook

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

5 of 5

