
QUICK START

Getting Started
Tutorial

GUIDES

Why React?
Displaying Data

JSX in Depth
JSX Gotchas

Interactivity and Dynamic UIs
Multiple Components
Reusable Components
Forms
Working With the Browser

More About Refs
Tooling integration
Reference

Forms
Form components such as <input> , <textarea> , and <option> differ from other native
components because they can be mutated via user interactions. These components provide
interfaces that make it easier to manage forms in response to user interactions.

Interactive Props
Form components support a few props that are affected via user interactions:

value , supported by <input> and <textarea> components.
checked , supported by <input> components of type checkbox or radio .
selected , supported by <option> components.

In HTML, the value of <textarea> is set via children. In React, you should use value instead.

Form components allow listening for changes by setting a callback to the onChange prop. The
onChange prop works across browsers to fire in response to user interactions when:

The value of <input> or <textarea> changes.
The checked state of <input> changes.
The selected state of <option> changes.

Like all DOM events, the onChange prop is supported on all native components and can be
used to listen to bubbled change events.

Controlled Components
An <input> with value set is a controlled component. In a controlled <input> , the value of
the rendered element will always reflect the value prop. For example:

1 of 5

This will render an input that always has a value of Hello! . Any user input will have no effect
on the rendered element because React has declared the value to be Hello! . If you wanted
to update the value in response to user input, you could use the onChange event:

In this example, we are simply accepting the newest value provided by the user and updating
the value prop of the <input> component. This pattern makes it easy to implement
interfaces that respond to or validate user interactions. For example:

This would accept user input but truncate the value to the first 140 characters.

 render: function() {
 return <input type="text" value="Hello!" />;
 }

 getInitialState: function() {
 return {value: 'Hello!'};
 },
 handleChange: function(event) {
 this.setState({value: event.target.value});
 },
 render: function() {
 var value = this.state.value;
 return <input type="text" value={value} onChange={this.handleChange} />;
 }

Code

 handleChange: function(event) {
 this.setState({value: event.target.value.substr(0, 140)});
 }

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

2 of 5

Uncontrolled Components
An <input> that does not supply a value (or sets it to null) is an uncontrolled component. In
an uncontrolled <input> , the value of the rendered element will reflect the user's input. For
example:

This will render an input that starts off with an empty value. Any user input will be immediately
reflected by the rendered element. If you wanted to listen to updates to the value, you could
use the onChange event just like you can with controlled components.

If you want to initialize the component with a non-empty value, you can supply a
defaultValue prop. For example:

This example will function much like the Controlled Components example above.

Likewise, <input> supports defaultChecked and <option> supports defaultSelected .

Advanced Topics

Why Controlled Components?

Using form components such as <input> in React presents a challenge that is absent when

 render: function() {
 return <input type="text" />;
 }

Code

 render: function() {
 return <input type="text" defaultValue="Hello!" />;
 }

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

3 of 5

This renders an input initialized with the value, Untitled . When the user updates the input,
the node's value property will change. However, node.getAttribute('value') will still return
the value used at initialization time, Untitled .

Unlike HTML, React components must represent the state of the view at any point in time and
not only at initialization time. For example, in React:

Since this method describes the view at any point in time, the value of the text input should
always be Untitled .

Why Textarea Value?

In HTML, the value of <textarea> is usually set using its children:

For HTML, this easily allows developers to supply multiline values. However, since React is
JavaScript, we do not have string limitations and can use \n if we want newlines. In a world
where we have value and defaultValue , it is ambiguous what role children play. For this
reason, you should not use children when setting <textarea> values:

 <input type="text" name="title" value="Untitled" />

Code

 render: function() {
 return <input type="text" name="title" value="Untitled" />;
 }

Code

 <!-- counterexample: DO NOT DO THIS! -->
 <textarea name="description">This is the description.</textarea>

Code

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

4 of 5

← Prev Next →

If you do decide to use children, they will behave like defaultValue .

A Facebook & Instagram collaboration. © 2013 Facebook Inc.

 <textarea name="description" value="This is a description." />

Facebook social plugin

CommentPosting as Stoyan Stefanov (Change)

Add a comment...

Post to Facebook

DOCS SUPPORT DOWNLOAD BLOG GITHUB React

5 of 5

